Modelling 1 SUMMER TERM 2020

$$
\begin{aligned}
& x_{1}=\left\langle\mathrm{v}, \mathbf{b}_{1}^{\prime}\right\rangle \\
& =2\left\langle\mathrm{v}, \mathrm{~b}_{1}\right\rangle
\end{aligned}
$$

ADDENDUM

Co- and Contravariance

Covariance \& Contravariance

Representing Vectors

Two operations in linear algebra

- Contravariant:

Linear combination of vectors

$$
\mathrm{v}=\sum_{i=1}^{n} x_{i} \mathbf{b}_{i} \quad \rightarrow \quad \mathrm{v} \equiv\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

- Covariant:

Projection on vectors (w/scalar product)

$$
\mathrm{v} \equiv\left(\begin{array}{c}
\left\langle\mathrm{v}, \mathbf{b}_{1}\right\rangle \\
\vdots \\
\left\langle\mathrm{v}, \mathbf{b}_{n}\right\rangle
\end{array}\right)
$$

Where is the difference?

Change of basis

- Contravariant: $f(\mathrm{x})=\sum_{i=1}^{n} x_{i} \mathbf{b}_{i}$
- Keep same output vector: $\mathbf{b}_{i} \rightarrow \mathbf{T} \mathbf{b}_{i}$ requires $\mathbf{x} \rightarrow \mathbf{T}^{-1} \mathbf{x}$
- Covariant:

$$
f(\mathrm{x})=\left(\begin{array}{c}
\left\langle\mathrm{x}, \mathrm{~b}_{1}\right\rangle \\
\vdots \\
\left\langle\mathrm{x}, \mathrm{~b}_{n}\right\rangle
\end{array}\right)
$$

- Keep same output vector: $\mathbf{b}_{i} \rightarrow \mathbf{T} \mathbf{b}_{i}$ requires $\mathrm{x} \rightarrow \mathbf{T x}$

$x_{1}=1.5$

$$
\begin{aligned}
& x_{1}=\left\langle\mathrm{v}, \mathbf{b}_{1}^{\prime}\right\rangle \\
& =2\left\langle\mathrm{v}, \mathrm{~b}_{1}\right\rangle
\end{aligned}
$$

Awesome Video

Tensors, Co-/Contra-Variance

- „Tensors Explained Intuitively: Covariant, Contravariant, Rank" Physics Videos by Eugene Khutoryansky https://www.youtube.com/watch?v=CliW7kSxxWU

Covariance \& Contravariance

Linear map

$$
\mathrm{f}: V_{1} \rightarrow V_{2}
$$

Matrix representation (standard basis)

$$
\mathbf{M} \in \mathbb{R}^{d_{1} \times d_{2}}
$$

Change of basis

$$
B_{1}=\left(\begin{array}{cc}
1 & \\
b_{1}^{(1)} & \cdots \\
b_{d_{1}}^{(1)} \\
\mid & \\
1
\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}
\mid & & \mid \\
b_{1}^{(2)} & \cdots & b_{b_{2}}^{(2)} \\
1 & & \mid \\
1
\end{array}\right)
$$

New matrix representation (bases \mathbb{B}_{1}, B_{2})

$$
\mathbf{B}_{2}^{-1} \mathbf{M} \mathbb{B}_{1} \in \mathbb{R}^{d_{1} \times d_{2}}
$$

Covariance \& Contravariance

Situation

Transformation law

- Input vectors $\mathbf{x}(\mathbf{M} \dot{\mathbf{x}}): \quad \mathbf{x}_{\left[\mathrm{B}_{1}\right]}=\mathrm{B}_{1} \mathbf{x}_{[1]}$
- Output vectors $\mathbf{y}=\mathbf{M x}: \mathbf{y}_{\left[\mathbf{B}_{2}\right]}=\mathbf{B}_{2}^{-1} \mathbf{y}_{[\mathrm{I}]}$ (contravariant)

Covariance \& Contravariance

Situation

Transformation law

- Input vectors $\mathbf{x}(\mathbf{M} \dot{\mathbf{x}}): \quad \mathbf{x}_{\left[\mathrm{B}_{1}\right]}=\mathrm{B}_{1} \mathbf{x}_{[1]}$
- Output vectors $\mathbf{y}=\mathbf{M x}: \mathbf{y}_{\left[\mathbf{B}_{2}\right]}=\mathbf{B}_{2}^{-1} \mathbf{y}_{[\mathrm{I}]}$ (contravariant)

Covariance \& Contravariance

$$
f(\mathbf{x}) \leftarrow \mathbf{B}_{2}^{-1} \mathbf{M B}_{1} \leftarrow \mathbf{x}
$$

$\mathbf{B}_{2}^{-1}(\underbrace{\left.\mathrm{MB}_{1}\right)}$

transforms row-vectors
$(\underbrace{\left.B_{2}^{-1} M\right) B_{1}}$
transforms column-vectors

Scalar Product

General scalar product

$$
\begin{gathered}
x, y \in \mathbb{R}^{d} \\
\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{x}^{\mathrm{T}} \mathbf{Q} y, \\
\left(\mathbf{Q}=\mathbf{Q}^{\mathrm{T}}, \mathrm{Q}>0\right)
\end{gathered}
$$

mapping M
$\langle\mathrm{x}, \mathrm{y}\rangle$
scalar
(no coordinate system)

$$
\begin{aligned}
& x \rightarrow B x, \\
& y \rightarrow B y \\
& y
\end{aligned}
$$

$$
\langle\mathrm{x}, \mathrm{y}\rangle_{[\mathrm{B}]}=\mathrm{x}^{\mathrm{T}} \cdot\left[\mathrm{~B}^{\mathrm{T}} \cdot \mathrm{Q} \cdot \mathrm{~B}\right] \cdot \mathrm{y}
$$

Three shades of dual PCA, SVD, MDS

Inputs and Outputs

Input ("covariant") side of the matrix

Output ("contravariant") side of the matrix

Squaring a Matrix

- Possibility 1: $\mathbf{A} \cdot \mathbf{A}^{T}$

- Possibility 2: $\mathbf{A}^{T} \cdot \mathbf{A}$

A Story about Dual Spaces

SVD

PCA

MDS

Tensors:
 Multi-Linear Maps

Tensors

General notion: Tensor

- Tensor: multi-linear form ${ }^{*}$ with $r \in \mathbb{N}$ input vectors

$$
\mathbf{T}: V_{1}, \ldots, V_{n}, V_{n+1}, \ldots, V_{r} \rightarrow F \text { (usually: field } F=\mathbb{R} \text {) }
$$

- "Rank r" tensor
- Linear in each input (when keeping the rest constant)
- Each input can be covariant or contravariant
- (n, m) tensor
- $r=n+m$
- n - contravariant inputs
- m - covariant inputs

Tensors

Representation

- Represented as r-dimensional array

$$
t_{j_{1}, j_{2}, \ldots, j_{m}}^{i_{1}, i_{2}, \ldots, i_{n}}
$$

- n - contravariant inputs ("indices")
- m - covariant inputs ("indices")
- Mapping rule

$$
\begin{gathered}
\mathbf{T}\left(\mathbf{V}^{(1)}, \ldots, \mathbf{v}^{(n)}, \mathbf{w}^{(1)}, \ldots, \mathbf{w}^{(m)}\right):= \\
\sum_{i_{1}=0, \ldots, n_{i_{1}}} \ldots \sum_{i_{n}=0, \ldots, n_{i_{n}}} \sum_{j_{1}=0, \ldots, n_{j_{1}}} \ldots \sum_{j_{m}=0, \ldots, n_{j_{m}}} v_{i_{1}}^{(1)} \cdots v_{i_{n}}^{(n)} w_{j_{1}}^{(1)} \cdots w_{j_{m}}^{(m)} t_{j_{1}, j_{2}, \ldots, j_{m}}^{i_{1}, i_{2}, \ldots, i_{n}}
\end{gathered}
$$

(Note: writing the application of \mathbf{T} as multi-linear mapping here)

Tensors

Remarks

- No difference between co-/contravariant dimensions in terms of numerical representation
- Generalization of matrix

Example

$\mathbf{T}\left(\binom{x_{1}}{x_{2}},\binom{y_{1}}{y_{2}},\left(\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right)\right)=42 x_{1} y_{1} z_{1}+23 x_{1} y_{1} z_{2}+\cdots+16 x_{2} y_{2} z_{3}$

- Purely linear polynomial in each input parameter when all others remain constant.
- 3 D array $-2 \times 2 \times 3$ combinations of coefficients

Einstein Notation

Example: Quadratic polynomial $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
\begin{gathered}
p^{j}(\mathrm{x})=\mathrm{x}^{\mathrm{T}} \mathbf{A x}+\mathbf{b} \mathbf{x}+\mathbf{c} \\
p^{j}=\left[\sum_{k=1}^{3} \sum_{l=1}^{3} x_{k} x_{l} a_{k l}^{j}\right]+\left[\sum_{k=1}^{3} x_{k} b_{k}^{j}\right]+\mathrm{c}^{j}
\end{gathered}
$$

Tensor notation

- Input: $x_{i}, i=1 . .3$ - Quadratic form (Matrix) A: $a_{k l}$
- Output: $p^{j}, j=1 . .3$
- Linear form (Co-Vector) b: b_{k}
- Constant c

Einstein Notation

Example: Quadratic polynomial $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
p^{j}(\mathrm{x})=\mathrm{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\mathbf{b} \mathrm{x}+\mathrm{c}
$$

Einstein notation (implicit sums over common indices)

$$
p^{j}=x_{k} x_{l} a_{k l}^{j}+x_{k} b_{k}^{j}+c^{j}
$$

Tensor notation

- Input: $x_{i}, i=1 . .3$
- Quadratic form (Matrix) A: $a_{k l}$
- Output: $p^{j}, j=1 . .3$
- Linear form (Co-Vector) b: b_{k}
- Constant c

Further Examples

Examples

- (n, m)-tensor
- n contravariant "indices"
- m covariant "indices"
- Matrix: (1,1)-tensor
- Scalar product: (0,2)-tensor
- Vector: $(1,0)$-tensor
- Co-vector: (0,1)-tensor
- Geometric vectors: $(1,0)$-tensors

Covariant Derivatives?

Examples

- Geometric vectors: $(1,0)$ tensors
- Derivatives*) / gradients / normal vectors: $(0,1)$ tensors
${ }^{*}$) to be precise:
- Spatial derivatives co-vary for changes of the basis of the space
$-f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(\mathbf{x})=\mathbf{y}, \Rightarrow \nabla f$ is covariant $(0,1)$.
- Examples: Gradient vector
- Derivatives of vector functions by unrelated dimensions remain contravariant
$-f: \mathbb{R} \rightarrow \mathbb{R}^{n}, f(t)=\mathbf{y}, \Rightarrow \frac{\mathrm{d}}{\mathrm{d} t} f$ remains contravariant $(1,0)$.
- Examples: velocity, acceleration
- Mixed case: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \nabla f=J_{f}$ is a (1,1)-tensor $(1,1)$

Example: Plane Equation

Plane equation(s)

- Parametric:

$$
\mathbf{x}=\lambda_{1} \mathbf{r}_{1}+\lambda_{2} \mathbf{r}_{2}+\mathbf{o}
$$

- Implicit:

$$
\langle\mathbf{n}, \mathbf{x}\rangle-d=0
$$

Transformation $\mathrm{x} \rightarrow$ Tx

- Parametric:

$$
\mathrm{Tx}=\mathrm{T}\left(\lambda_{1} \mathrm{r}_{1}+\lambda_{2} \mathrm{r}_{2}+\mathbf{o}\right)=\lambda_{1} \mathrm{Tr}_{1}+\lambda_{2} \mathrm{Tr}_{2}+\mathrm{To}
$$

- Implicit:

$$
\langle\mathbf{n}, \mathbf{T} \mathbf{x}\rangle-d=\left(\mathbf{n}^{\mathrm{T}} \mathbf{T}\right) \mathbf{x}-d 0
$$

More Structure?

Connecting

- Integrals
- Derivatives
- In higher dimensions
- And their transformation rules

"Exterior Calculus"

- Unified framework
- Beyond this lecture (take a real math course :-))

Vectors \& Covectors in Function Spaces

Remark: Function Spaces

Discrete vector spaces

- Picking entries by index is a linear operation
- Can be represented by projection to vector (multiplication with "co-vector")

Example

- $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
- $\mathbf{x} \mapsto x_{4}$ is a linear maps
- Represented by $\langle(0,0,0,1,0), \mathbf{x}\rangle$
- "Linear form": $\mathbf{x} \mapsto\langle(0,0,0,1,0), \mathbf{x}\rangle$, in short, $\langle\cdot,(0,0,0,1,0)\rangle$, shorter: $(0,0,0,1,0)=$

Linear Forms in Function Spaces

In function spaces

- Picking entries by x-axis is a linear operation
- Cannot be represented by projection to another function (multiplication with "co-vector")

Example

$$
\begin{gathered}
g(x)=\left\{\begin{array}{l}
1, \text { if } x=4 \\
0, \text { elsewhere }
\end{array}\right. \\
\int_{\mathbb{R}} f(x) g(x) d x=0
\end{gathered}
$$

- $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\sin (x)$
- $L:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \mathbb{R}, \quad L: f \mapsto f(4.0)$ is a linear map
- A function g with $\langle g, f\rangle=f(4.0)$ does not exist

Dirac's "Delta Function"

Dirac Delta "Function"

- $\int_{\mathbb{R}} \delta(x) d x=1$, zero everywhere but at $x=0$
- Idealization ("distribution") - think of very sharp peak

Distributions

Distributions

- Adding all linear forms to the vector space
- All linear mappings from the function space to \mathbb{R}
- This makes the situation symmetric
- δ is a distribution, not a (traditional) function

Formalization

- Different approaches (details beyond our course)
- Limits of "bumps"
- Space of linear-forms ("co-vectors", "dual functions")
- Difference of complex functions on Riemann sphere (exotic)

